Embedding graphs in surfaces: MacLane’s theorem for higher genus∗
نویسندگان
چکیده
Given a closed surface S, we characterise the graphs embeddable in S by an algebraic condition asserting the existence of a sparse generating set for their cycle space. When S is the sphere, the condition defaults to MacLane’s planarity criterion.
منابع مشابه
MacLane's theorem for arbitrary surfaces
Given a closed surface S, we characterise the graphs embeddable in S by an algebraic condition asserting the existence of a sparse generating set for their cycle space. When S is the sphere, the condition defaults to MacLane’s planarity criterion.
متن کاملFour-coloring Six-regular Graphs on the Torus
A classic 3-color theorem attributed to Heawood [10, 11] (also observed by Kempe [16]) states that every even triangulation of the plane is 3-chromatic; by even we mean that every vertex has even degree. We are interested in the extent to which an analogous theorem carries over to even triangulations of the torus and to other surfaces of larger genus. In general, even triangulations of the toru...
متن کاملAn obstruction to embedding graphs in surfaces
There is much work done in the theory of embeddings of graphs in closed surfaces. Among the most important results is the solution of the Heawood Map Coloring Problem which includes the determination of the genera of complete graphs. (The reader is referred to the Ringel’s book [8], and also to monographs by White [ 161 and Gross and Tucker [6].) Many nice and powerful techniques were developed...
متن کاملPolynomial-Time Approximation Schemes
We present the first polynomial-time approximation schemes (PTASes) for the following subset-connectivity problems in edge-weighted graphs of bounded genus: Steiner tree, low-connectivity survivable-network design, and subset TSP. The schemes run in O(n log n) time for graphs embedded on both orientable and nonorientable surfaces. This work generalizes the PTAS frameworks of Borradaile, Klein, ...
متن کاملPlanarity and duality of finite and infinite graphs
We present a short proof of the following theorems simultaneously: Kuratowski’s theorem, Fary’s theorem, and the theorem of Tutte that every 3-connected planar graph has a convex representation. We stress the importance of Kuratowski’s theorem by showing how it implies a result of Tutte on planar representations with prescribed vertices on the same facial cycle as well as the planarity criteria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008